We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services.

How machine learning can grow your eCommerce site

By
Kieran Donkin
November 4, 2022
5 mins

When it comes to valuable applications of machine learning, eCommerce is up there with the best.

We all know that online shopping is on the rise. During the early onset of COVID-19, eCommerce sales increased by 43%, causing many retailers to either open new online stores or strengthen their existing ones.

As online retail sales continue to scale new heights, there’s more demand for hyper-personalization for delivering tailored experiences, content, and incentives.

Machine learning is one way of optimizing the output of personalized recommendations, but it has many different applications in the eCommerce world.

In this blog, we’ll explain how machine learning can take your eCommerce business to the next level.

What is machine learning?

Machine learning is a branch of artificial intelligence (AI) that uses data and algorithms to make predictions.

Retailers can apply machine learning algorithms to make accurate assumptions on what each customer needs throughout their journey.

Let’s say you’ve just added a certain product (item 1) to your online shopping cart. Machine learning can study previous purchases of item 1 to see whether it’s typically bought with something else.

If there’s a product (item 2) that tends to purchased with item 1, the technology will recommend item 1 to customers checking out with item 2, and vice versa.

As you might have guessed, machine learning uses data to learn from every journey. The more data it gathers, the more it learns, and the better it gets.

How does eCommerce and machine learning work together?

Machine learning can mimic human behavior to complete tasks quickly and without supervision. This role is key to integrating hyper-personalization into your marketing strategy.

Some of the tasks performed by machine learning include processing large amounts of data, monitoring repetitive patterns, and building files to record and optimize engagement rates.

The outcomes for eCommerce brands are better conversion rates and order values by improving the success of your recommendations.

Now we know how machine learning works in an eCommerce context, let’s look at some ways of applying it.

Machine learning application #1: Recommendation engines

The first example of how machine learning can improve your eCommerce business is through product recommendation engines.

Here, machine learning allows you to look over past data (i.e. previous sales, interactions) and assist with creating customer profiles. These can help you serve accurate recommendations to shoppers that exhibit familiar behaviors.

Recommendation engines process lots of different information. Some examples include:

  • Items in cart
  • Cart value
  • Customer behavior

Using machine learning to analyze this data can help you assign keywords to products and track preferences from sales. When someone fits the profile of a ‘lookalike’ customer, you can then make recommendations based on successful outcomes of similar shoppers.

Machine learning application # 2: Pricing optimization

Instead of creating a static price strategy, you can use machine learning to build a dynamic plan based on multiple factors. Machine learning helps you understand whether to go lower or higher by predicting the response from your customers.

You could change the price of a product for multiple reasons. Machine learning considers factors such as:

  • Competition
  • Production costs
  • Weather
  • Special events

The demand for your products will go up and down throughout the year. Machine learning monitors past purchases, sales trends, and demand/supply data to devise the right pricing strategy.

Machine learning application #3: Trend analysis

To stay ahead of your competition, you must be up-to-date with current trends. It would take employees hours to gather enough data to compare trends across the industry. However, machine learning can do it within a few minutes.

For busy times of the year like Black Friday and Christmas, machine learning helps you to prepare in advance and ensure you have the right items for customers.

Think of it as forecasting what’s about to be popular during a major sales event.

Where RevLifter comes in…

Ultimately, the benefits of machine learning are clear for any eCommerce business. With RevLifter, you can drive your goals by using data to decide precisely what your customers need to convert.

Get our emails in your inbox Join thousands of eCommerce folks looking to improve performance together